484 research outputs found

    Towards a Better Understanding of the Local Attractor in Particle Swarm Optimization: Speed and Solution Quality

    Full text link
    Particle Swarm Optimization (PSO) is a popular nature-inspired meta-heuristic for solving continuous optimization problems. Although this technique is widely used, the understanding of the mechanisms that make swarms so successful is still limited. We present the first substantial experimental investigation of the influence of the local attractor on the quality of exploration and exploitation. We compare in detail classical PSO with the social-only variant where local attractors are ignored. To measure the exploration capabilities, we determine how frequently both variants return results in the neighborhood of the global optimum. We measure the quality of exploitation by considering only function values from runs that reached a search point sufficiently close to the global optimum and then comparing in how many digits such values still deviate from the global minimum value. It turns out that the local attractor significantly improves the exploration, but sometimes reduces the quality of the exploitation. As a compromise, we propose and evaluate a hybrid PSO which switches off its local attractors at a certain point in time. The effects mentioned can also be observed by measuring the potential of the swarm

    Patch-Clamp Analysis of Voltage-Activated and Chemically Activated Currents in the Vomeronasal Organ Of Sternotherus Odoratus (Stinkpot/Musk Turtle)

    Get PDF
    The electrophysiological basis of chemical communication in the specialized olfactory division of the vomeronasal (VN) organ is poorly understood. In total, 198 patch-clamp recordings were made from 42 animals (Sternotherus odoratus, the stinkpot/musk turtle) to study the electrically and chemically activated properties of VN neurons. The introduction of tetramethylrhodamine-conjugated dextran into the VN orifice permitted good visualization of the vomeronasal neural epithelium prior to dissociating it into single neurons. Basic electrical properties of the neurons were measured (resting potential, -54.5 +/- 2.7 mV, N=11; input resistance, 6.7 +/- 1.4 G Omega, N=25; capacitance, 4.2 +/- 0.3 pF, N=22; means +/- S.E.M.). The voltage-gated K(+) current inactivation rate was significantly slower in VN neurons from males than in those from females, and K(+) currents in males were less sensitive (greater K(i)) to tetraethylammonium. Vomeronasal neurons were held at a holding potential of -60 mV and tested for their response to five natural chemicals, female urine, male urine, female musk, male musk and catfish extract. Of the 90 VN neurons tested, 33 (34 %) responded to at least one of the five compounds. The peak amplitude of chemically evoked currents ranged from 4 to 180 pA, with two-thirds of responses less than 25 pA. Urine-evoked currents were of either polarity, whereas musk and catfish extract always elicited only inward currents. Urine applied to neurons harvested from female animals evoked currents that were 2-3 times larger than those elicited from male neurons. Musk-evoked inward currents were three times the magnitude of urine- or catfish-extract-evoked inward currents. The calculated breadth of responsiveness for neurons presented with this array of five chemicals indicated that the mean response spectrum of the VN neurons is narrow (H metric 0.11). This patch-clamp study indicates that VN neurons exhibit sexual dimorphism in function and specificity in response to complex natural chemicals.io

    Basic Properties of a Vortex in a Noncentrosymmetric Superconductor

    Full text link
    We numerically study the vortex core structure in a noncentrosymmetric superconductor such as CePt3Si without mirror symmetry about the xy plane. A single vortex along the z axis and a mixed singlet-triplet Cooper pairing model are considered. The spatial profiles of the pair potential, local density of states, supercurrent density, and radially-textured magnetic moment density around the vortex are obtained in the clean limit on the basis of the quasiclassical theory of superconductivity.Comment: 6 pages; submitted to Proc. of VORTEX I

    Rapid Encoding and Perception of Novel Odors in the Rat

    Get PDF
    To gain insight into which parameters of neural activity are important in shaping the perception of odors, we combined a behavioral measure of odor perception with optical imaging of odor representations at the level of receptor neuron input to the rat olfactory bulb. Instead of the typical test of an animal's ability to discriminate two familiar odorants by exhibiting an operant response, we used a spontaneously expressed response to a novel odorant—exploratory sniffing—as a measure of odor perception. This assay allowed us to measure the speed with which rats perform spontaneous odor discriminations. With this paradigm, rats discriminated and began responding to a novel odorant in as little as 140 ms. This time is comparable to that measured in earlier studies using operant behavioral readouts after extensive training. In a subset of these trials, we simultaneously imaged receptor neuron input to the dorsal olfactory bulb with near-millisecond temporal resolution as the animal sampled and then responded to the novel odorant. The imaging data revealed that the bulk of the discrimination time can be attributed to the peripheral events underlying odorant detection: receptor input arrives at the olfactory bulb 100–150 ms after inhalation begins, leaving only 50–100 ms for central processing and response initiation. In most trials, odor discrimination had occurred even before the initial barrage of receptor neuron firing had ceased and before spatial maps of activity across glomeruli had fully developed. These results suggest a coding strategy in which the earliest-activated glomeruli play a major role in the initial perception of odor quality, and place constraints on coding and processing schemes based on simple changes in spike rate

    On topological spin excitations on a rigid torus

    Full text link
    We study Heisenberg model of classical spins lying on the toroidal support, whose internal and external radii are rr and RR, respectively. The isotropic regime is characterized by a fractional soliton solution. Whenever the torus size is very large, RR\to\infty, its charge equals unity and the soliton effectively lies on an infinite cylinder. However, for R=0 the spherical geometry is recovered and we obtain that configuration and energy of a soliton lying on a sphere. Vortex-like configurations are also supported: in a ring torus (R>rR>r) such excitations present no core where energy could blow up. At the limit RR\to\infty we are effectively describing it on an infinite cylinder, where the spins appear to be practically parallel to each other, yielding no net energy. On the other hand, in a horn torus (R=rR=r) a singular core takes place, while for R<rR<r (spindle torus) two such singularities appear. If RR is further diminished until vanish we recover vortex configuration on a sphere.Comment: 11 pages, 9 figure

    Illuminating Vertebrate Olfactory Processing

    Get PDF
    The olfactory system encodes information about molecules by spatiotemporal patterns of activity across distributed populations of neurons and extracts information from these patterns to control specific behaviors. Recent studies used in vivo recordings, optogenetics, and other methods to analyze the mechanisms by which odor information is encoded and processed in the olfactory system, the functional connectivity within and between olfactory brain areas, and the impact of spatiotemporal patterning of neuronal activity on higher-order neurons and behavioral outputs. The results give rise to a faceted picture of olfactory processing and provide insights into fundamental mechanisms underlying neuronal computations. This review focuses on some of this work presented in a Mini-Symposium at the Annual Meeting of the Society for Neuroscience in 2012

    Understanding the evolution of native pinewoods in Scotland will benefit their future management and conservation

    Get PDF
    Scots pine (Pinus sylvestris L.) is a foundation species in Scottish highland forests and a national icon. Due to heavy exploitation, the current native pinewood coverage represents a small fraction of the postglacial maximum. To reverse this decline, various schemes have been initiated to promote planting of new and expansion of old pinewoods. This includes the designation of seed zones for control of the remaining genetic resources. The zoning was based mainly on biochemical similarity among pinewoods but, by definition, neutral molecular markers do not reflect local phenotypic adaptation. Environmental variation within Scotland is substantial and it is not yet clear to what extent this has shaped patterns of adaptive differentiation among Scottish populations. Systematic, rangewide common-environment trials can provide insights into the evolution of the native pinewoods, indicating how environment has influenced phenotypic variation and how variation is maintained. Careful design of such experiments can also provide data on the history and connectivity among populations, by molecular marker analysis. Together, phenotypic and molecular datasets from such trials can provide a robust basis for refining seed transfer guidelines for Scots pine in Scotland and should form the scientific basis for conservation action on this nationally important habitat

    Evolutionary targets of gene expression divergence in a complex of closely related pine species

    Get PDF
    The environment is a powerful selective pressure for sessile organisms, such as plants, and adaptation to the environment is particularly important for long-lived species, like trees. Despite the importance of adaptive trait variation to the survival and success of trees, the molecular basis of adaptation is still poorly understood. Gene expression patterns in three closely related, but phenotypically and ecologically divergent, pine species were analyzed to detect differentiation that may be associated with their adaptation to distinct environments. Total RNA of Pinus mugo, Pinus uncinata, and Pinus sylvestris samples grown under common garden conditions was used for de novo transcriptome assembly, providing a new reference dataset that includes species from the taxonomically challenging P. mugo complex. Gene expression profiles were found to be very similar with only 121 genes significantly diverged in any of the pairwise species comparisons. Functional annotation of these genes revealed major categories of distinctly expressed transcripts, including wood trait properties, oxidative stress response, and response to abiotic factors such as salinity, drought, and temperature. We discuss putative associations between gene expression profiles and adaptation to different environments, for example, the upregulation of genes involved in lignin biosynthesis in the species, which have adapted to mountainous regions characterized by strong winds and thick snow cover. Our study provides valid candidates for verification of the importance of the gene expression role, in addition to evidence for selection within genomic regions, in the process of ecological divergence and adaptation to higher altitudes in pine taxa
    corecore